• Haroche, S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bužek, V., Drobný, G., Kim, M. S., Adam, G. & Knight, P. L. Cavity QED with cold trapped ions. Phys. Rev. A 56, 2352–2360 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Albrecht, R., Bommer, A., Deutsch, C., Reichel, J. & Becher, C. Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity. Phys. Rev. Lett. 110, 243602 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Manenti, R. et al. Circuit quantum acoustodynamics with surface acoustic waves. Nat. Commun. 8, 975 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Joshi, A., Noh, K. & Gao, Y. Y. Quantum information processing with bosonic qubits in circuit QED. Quantum Sci. Technol. 6, 033001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Copetudo, A., Fontaine, C. Y., Valadares, F. & Gao, Y. Y. Shaping photons: Quantum information processing with bosonic cQED. Appl. Phys. Lett. 124, 080502 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sivak, V. V. et al. Real-time quantum error correction beyond break-even. Nature 616, 50–55 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. S. et al. Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic Processor. Phys. Rev. X 10, 021060 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Braumüller, J. et al. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Nat. Commun. 8, 779 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Heisenberg-limited single-mode quantum metrology in a superconducting circuit. Nat. Commun. 10, 4382 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, B. J. et al. High-On-Off-Ratio Beam-Splitter Interaction for Gates on Bosonically Encoded Qubits. PRX Quantum 4, 020355 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Y. et al. High-fidelity parametric beamsplitting with a parity-protected converter. Nat. Commun. 14, 5767 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, M.D. Entanglement and Quantum Error Correction with Superconducting Qubits. PhD. (Yale University 2013).

  • Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, R. & Strauch, F. W. Quantum state synthesis of superconducting resonators. Phys. Rev. A 93, 012342 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Strauch, F. W., Jacobs, K. & Simmonds, R. W. Arbitrary Control of Entanglement between two Superconducting Resonators. Phys. Rev. Lett. 105, 050501 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Strauch, F. W. All-Resonant Control of Superconducting Resonators. Phys. Rev. Lett. 109, 210501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Terhal, B. M. & Weigand, D. Encoding a qubit into a cavity mode in circuit QED using phase estimation. Phys. Rev. A 93, 012315 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Terhal, B. M., Conrad, J. & Vuillot, C. Towards scalable bosonic quantum error correction. Quantum Sci. Technol. 5, 043001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Aoki, T., Kanao, T., Goto, H., Kawabata, S. & Masuda, S. Control of the $ZZ$ coupling between Kerr-cat qubits via transmon couplers http://arxiv.org/abs/2303.16622 (2023).

  • He, Q.-K. & Zhou, D.-L. Tunable coupling between a superconducting resonator and an artificial atom. Eur. Phys. J. D. 73, 96 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Navau, C., Prat-Camps, J., Romero-Isart, O., Cirac, J. & Sanchez, A. Long-Distance Transfer and Routing of Static Magnetic Fields. Phys. Rev. Lett. 112, 253901 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gargiulo, O., Oleschko, S., Prat-Camps, J., Zanner, M. & Kirchmair, G. Fast flux control of 3d transmon qubits using a magnetic hose. Appl. Phys. Lett. 118 (2021).

  • Butscher, J. Shaping of Fast Flux Pulses for Two-Qubit Gates (Master’s thesis ETH Zurich 2018).

  • Supplementary information: On-demand transposition across light-matter interaction regimes in bosonic cQED.

  • Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eickbusch, A. et al. Fast universal control of an oscillator with weak dispersive coupling to a qubit. Nat. Phys. 18, 1464–1469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W.-L. et al. Quantum control of bosonic modes with superconducting circuits. Sci. Bull. 66, 1789–1805 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Michael, M. H. et al. New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Phys. Rev. X 6, 031006 (2016).


    Google Scholar
     

  • Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. N. J. Phys. 16, 045014 (2014).

    Article 

    Google Scholar
     

  • Pan, X. et al. Protecting the Quantum Interference of Cat States by Phase-Space Compression. Phys. Rev. X 13, 021004 (2023).

    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Engineering bilinear mode coupling in circuit QED: Theory and experiment. Phys. Rev. A 99, 012314 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sivak, V. et al. Kerr-Free Three-Wave Mixing in Superconducting Quantum Circuits. Phys. Rev. Appl. 11, 054060 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, C.-H., Noh, K., Lebreuilly, J., Girvin, S. & Jiang, L. Photon-number-dependent hamiltonian engineering for cavities. Phys. Rev. Appl. 15, 044026 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y., Curtis, J. C., Wang, C. S., Schoelkopf, R. & Girvin, S. Drive-induced nonlinearities of cavity modes coupled to a transmon ancilla. Phys. Rev. A 105, 022423 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Yoshihara, F., Harrabi, K., Niskanen, A. O., Nakamura, Y. & Tsai, J. S. Decoherence of Flux Qubits due to 1 / f Flux Noise. Phys. Rev. Lett. 97, 167001 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Braumüller, J. et al. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment. Appl. Phys. Lett. 108, 032601 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hutchings, M. et al. Tunable Superconducting Qubits with Flux-Independent Coherence. Phys. Rev. Appl. 8, 044003 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Krisnanda, T. et al. Demonstrating efficient and robust bosonic state reconstruction via optimized excitation counting. https://arxiv.org/abs/2403.03080 (2024).

  • Mezzacapo, A. et al. Digital Quantum Rabi and Dicke Models in Superconducting Circuits. Sci. Rep. 4, 7482 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, K., Marek, P. & Filip, R. Efficient quantum simulation of nonlinear interactions using snap and rabi gates. Quantum Sci. Technol. 9, 025004 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Sung, Y. et al. Realization of high-fidelity cz and zz-free iswap gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).

    CAS 

    Google Scholar
     

  • Naik, R. K. et al. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8 https://doi.org/10.1038/s41467-017-02046-6 (2017).

  • Wu, Y. et al. An efficient and compact switch for quantum circuits. npj Quant. Inform. 4 https://doi.org/10.1038/s41534-018-0099-6 (2018).

  • Didier, N., Sete, E. A., Combes, J. & da Silva, M. P. ac flux sweet spots in parametrically modulated superconducting qubits. Phys. Rev. Appl. 12 https://doi.org/10.1103/PhysRevApplied.12.054015 (2019).

  • Hong, S. S. et al. Demonstration of a parametrically activated entangling gate protected from flux noise. Phys. Rev. A101 https://doi.org/10.1103/PhysRevA.101.012302 (2020).

  • Valery, J. A., Chowdhury, S., Jones, G. & Didier, N. Dynamical sweet spot engineering via two-tone flux modulation of superconducting qubits. PRX Quantum 3, 020337 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, G., Xiao, R., Shen, H. Z., Sun, C. & Xue, K. Simulating anisotropic quantum rabi model via frequency modulation. Sci. Rep. 9 https://doi.org/10.1038/s41598-019-40899-7 (2019).

  • Wang, Y. et al. Quantum criticality and state engineering in the simulated anisotropic quantum rabi model. N. J. Phys. 20, 053061 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • André, S. et al. Single-qubit lasing in the strong-coupling regime. Phys. Rev. A82 https://doi.org/10.1103/PhysRevA.82.053802 (2010).

  • Blais, A. et al. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Schuster, D. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Axline, C. et al. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. 109, 042601 (2016).

    Article 
    ADS 

    Google Scholar